There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{t}{2})e^{\frac{v}{(-2t)}}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}te^{\frac{\frac{1}{-2}v}{t}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}te^{\frac{\frac{1}{-2}v}{t}}\right)}{dt}\\=&\frac{1}{2}e^{\frac{\frac{1}{-2}v}{t}} + \frac{\frac{1}{2}te^{\frac{\frac{1}{-2}v}{t}}*\frac{1}{-2}v*-1}{t^{2}}\\=&\frac{e^{\frac{\frac{1}{-2}v}{t}}}{2} + \frac{ve^{\frac{\frac{1}{-2}v}{t}}}{4t}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !