There are 1 questions in this calculation: for each question, the 4 derivative of v is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(u + v)}^{3} + p(u + v) + q\ with\ respect\ to\ v:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3u^{2}v + 3uv^{2} + up + v^{3} + u^{3} + pv + q\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3u^{2}v + 3uv^{2} + up + v^{3} + u^{3} + pv + q\right)}{dv}\\=&3u^{2} + 3u*2v + 0 + 3v^{2} + 0 + p + 0\\=&6uv + 3u^{2} + 3v^{2} + p\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6uv + 3u^{2} + 3v^{2} + p\right)}{dv}\\=&6u + 0 + 3*2v + 0\\=&6u + 6v\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6u + 6v\right)}{dv}\\=&0 + 6\\=&6\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6\right)}{dv}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !