Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(x + X)}^{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x + X)^{6}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x + X)^{6}\right)}{dx}\\=&(6(x + X)^{5}(1 + 0))\\=&6x^{5} + 30Xx^{4} + 60X^{2}x^{3} + 60X^{3}x^{2} + 30X^{4}x + 6X^{5}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6x^{5} + 30Xx^{4} + 60X^{2}x^{3} + 60X^{3}x^{2} + 30X^{4}x + 6X^{5}\right)}{dx}\\=&6*5x^{4} + 30X*4x^{3} + 60X^{2}*3x^{2} + 60X^{3}*2x + 30X^{4} + 0\\=&30x^{4} + 120Xx^{3} + 180X^{2}x^{2} + 120X^{3}x + 30X^{4}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 30x^{4} + 120Xx^{3} + 180X^{2}x^{2} + 120X^{3}x + 30X^{4}\right)}{dx}\\=&30*4x^{3} + 120X*3x^{2} + 180X^{2}*2x + 120X^{3} + 0\\=&120x^{3} + 360Xx^{2} + 360X^{2}x + 120X^{3}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 120x^{3} + 360Xx^{2} + 360X^{2}x + 120X^{3}\right)}{dx}\\=&120*3x^{2} + 360X*2x + 360X^{2} + 0\\=&360x^{2} + 720Xx + 360X^{2}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return