There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 9e^{8x} + 18e^{4x} + 54e^{2x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 9e^{8x} + 18e^{4x} + 54e^{2x}\right)}{dx}\\=&9e^{8x}*8 + 18e^{4x}*4 + 54e^{2x}*2\\=&72e^{8x} + 72e^{4x} + 108e^{2x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 72e^{8x} + 72e^{4x} + 108e^{2x}\right)}{dx}\\=&72e^{8x}*8 + 72e^{4x}*4 + 108e^{2x}*2\\=&576e^{8x} + 288e^{4x} + 216e^{2x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 576e^{8x} + 288e^{4x} + 216e^{2x}\right)}{dx}\\=&576e^{8x}*8 + 288e^{4x}*4 + 216e^{2x}*2\\=&4608e^{8x} + 1152e^{4x} + 432e^{2x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 4608e^{8x} + 1152e^{4x} + 432e^{2x}\right)}{dx}\\=&4608e^{8x}*8 + 1152e^{4x}*4 + 432e^{2x}*2\\=&36864e^{8x} + 4608e^{4x} + 864e^{2x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !