There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ axxx + bxx + cx + d\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{3} + bx^{2} + cx + d\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{3} + bx^{2} + cx + d\right)}{dx}\\=&a*3x^{2} + b*2x + c + 0\\=&3ax^{2} + 2bx + c\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3ax^{2} + 2bx + c\right)}{dx}\\=&3a*2x + 2b + 0\\=&6ax + 2b\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6ax + 2b\right)}{dx}\\=&6a + 0\\=&6a\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6a\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !