There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ a + bsin(x) + cxx + dxxx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a + bsin(x) + cx^{2} + dx^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a + bsin(x) + cx^{2} + dx^{3}\right)}{dx}\\=&0 + bcos(x) + c*2x + d*3x^{2}\\=&bcos(x) + 2cx + 3dx^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( bcos(x) + 2cx + 3dx^{2}\right)}{dx}\\=&b*-sin(x) + 2c + 3d*2x\\=& - bsin(x) + 2c + 6dx\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - bsin(x) + 2c + 6dx\right)}{dx}\\=& - bcos(x) + 0 + 6d\\=& - bcos(x) + 6d\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - bcos(x) + 6d\right)}{dx}\\=& - b*-sin(x) + 0\\=&bsin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !