There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1400(1080 - \frac{67}{10}x - 48))}{(x(\frac{129}{5} - \frac{1}{5}x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-9380x}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} + \frac{1444800}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-9380x}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} + \frac{1444800}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)}\right)}{dx}\\=&-9380(\frac{-(\frac{-1}{5}*2x + \frac{129}{5})}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}})x - \frac{9380}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} + 1444800(\frac{-(\frac{-1}{5}*2x + \frac{129}{5})}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}})\\=&\frac{-3752x^{2}}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}} + \frac{819924x}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}} - \frac{9380}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} - \frac{37275840}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !