There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{71}{10} - \frac{2}{5})}{(1 + {e}^{(\frac{7}{10}(x - \frac{39}{10}))})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{67}{10}}{({e}^{(\frac{7}{10}x - \frac{273}{100})} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{67}{10}}{({e}^{(\frac{7}{10}x - \frac{273}{100})} + 1)}\right)}{dx}\\=&\frac{67}{10}(\frac{-(({e}^{(\frac{7}{10}x - \frac{273}{100})}((\frac{7}{10} + 0)ln(e) + \frac{(\frac{7}{10}x - \frac{273}{100})(0)}{(e)})) + 0)}{({e}^{(\frac{7}{10}x - \frac{273}{100})} + 1)^{2}})\\=&\frac{-469{e}^{(\frac{7}{10}x - \frac{273}{100})}}{100({e}^{(\frac{7}{10}x - \frac{273}{100})} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !