There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (x - X - 1)(xx + x + XX + X + xX + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} - Xx - 2X^{2} - X^{3} - 2X - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} - Xx - 2X^{2} - X^{3} - 2X - 1\right)}{dx}\\=&3x^{2} - X + 0 + 0 + 0 + 0\\=&3x^{2} - X\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2} - X\right)}{dx}\\=&3*2x + 0\\=&6x\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6x\right)}{dx}\\=&6\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !