Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{llg(g)x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{lxlg(g)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{lxlg(g)}\right)}{dx}\\=&e^{lxlg(g)}(llg(g) + \frac{lx*0}{ln{10}(g)})\\=&le^{lxlg(g)}lg(g)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( le^{lxlg(g)}lg(g)\right)}{dx}\\=&le^{lxlg(g)}(llg(g) + \frac{lx*0}{ln{10}(g)})lg(g) + \frac{le^{lxlg(g)}*0}{ln{10}(g)}\\=&l^{2}e^{lxlg(g)}lg^{2}(g)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( l^{2}e^{lxlg(g)}lg^{2}(g)\right)}{dx}\\=&l^{2}e^{lxlg(g)}(llg(g) + \frac{lx*0}{ln{10}(g)})lg^{2}(g) + \frac{l^{2}e^{lxlg(g)}*2lg(g)*0}{ln{10}(g)}\\=&l^{3}e^{lxlg(g)}lg^{3}(g)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( l^{3}e^{lxlg(g)}lg^{3}(g)\right)}{dx}\\=&l^{3}e^{lxlg(g)}(llg(g) + \frac{lx*0}{ln{10}(g)})lg^{3}(g) + \frac{l^{3}e^{lxlg(g)}*3lg^{2}(g)*0}{ln{10}(g)}\\=&l^{4}e^{lxlg(g)}lg^{4}(g)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return