Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {arcsin(x)}^{23456789}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin^{23456789}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin^{23456789}(x)\right)}{dx}\\=&(\frac{23456789arcsin^{23456788}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{23456789arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{23456789arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&23456789(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{23456788}(x) + \frac{23456789(\frac{23456788arcsin^{23456787}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{23456789xarcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732arcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{23456789xarcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732arcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&23456789(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{23456788}(x) + \frac{23456789arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{23456789x(\frac{23456788arcsin^{23456787}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{550220926733732(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{550220926733732(\frac{23456787arcsin^{23456786}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{70370367x^{2}arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{23456789arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732xarcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{1100441853467464xarcsin^{23456787}(x)}{(-x^{2} + 1)^{2}} - \frac{6305770260928892116arcsin^{23456786}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{70370367x^{2}arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{23456789arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732xarcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{1100441853467464xarcsin^{23456787}(x)}{(-x^{2} + 1)^{2}} - \frac{6305770260928892116arcsin^{23456786}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&70370367(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2}arcsin^{23456788}(x) + \frac{70370367*2xarcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{70370367x^{2}(\frac{23456788arcsin^{23456787}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{5}{2}}} + 23456789(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})arcsin^{23456788}(x) + \frac{23456789(\frac{23456788arcsin^{23456787}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{550220926733732arcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{550220926733732x(\frac{23456787arcsin^{23456786}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + 1100441853467464(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})xarcsin^{23456787}(x) + \frac{1100441853467464arcsin^{23456787}(x)}{(-x^{2} + 1)^{2}} + \frac{1100441853467464x(\frac{23456787arcsin^{23456786}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{2}} - \frac{6305770260928892116(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})arcsin^{23456786}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{6305770260928892116(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{23456786}(x)}{(-x^{2} + 1)} - \frac{6305770260928892116(\frac{23456786arcsin^{23456785}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{351851835x^{3}arcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{211111101xarcsin^{23456788}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1650662780201196x^{2}arcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{5}{2}}} + \frac{550220926733732arcsin^{23456787}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{6602651120804784x^{2}arcsin^{23456787}(x)}{(-x^{2} + 1)^{3}} + \frac{1650662780201196arcsin^{23456787}(x)}{(-x^{2} + 1)^{2}} - \frac{6305770260928892116xarcsin^{23456786}(x)}{(-x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}} + \frac{5835203551851767384xarcsin^{23456786}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{2}} - \frac{470566709077124732xarcsin^{23456786}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{7596301620547639016arcsin^{23456785}(x)}{(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return