There are 1 questions in this calculation: for each question, the 4 derivative of U is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ aUUUU + blg(U) + Ulog_{U}^{u} + cuuuu + dx + e^{U}\ with\ respect\ to\ U:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = aU^{4} + blg(U) + Ulog_{U}^{u} + u^{4}c + dx + e^{U}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( aU^{4} + blg(U) + Ulog_{U}^{u} + u^{4}c + dx + e^{U}\right)}{dU}\\=&a*4U^{3} + \frac{b}{ln{10}(U)} + log_{U}^{u} + U(\frac{(\frac{(0)}{(u)} - \frac{(1)log_{U}^{u}}{(U)})}{(ln(U))}) + 0 + 0 + e^{U}\\=&4aU^{3} + \frac{b}{Uln{10}} - \frac{log_{U}^{u}}{ln(U)} + log_{U}^{u} + e^{U}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4aU^{3} + \frac{b}{Uln{10}} - \frac{log_{U}^{u}}{ln(U)} + log_{U}^{u} + e^{U}\right)}{dU}\\=&4a*3U^{2} + \frac{b*-1}{U^{2}ln{10}} + \frac{b*-0}{Uln^{2}{10}} - \frac{(\frac{(\frac{(0)}{(u)} - \frac{(1)log_{U}^{u}}{(U)})}{(ln(U))})}{ln(U)} - \frac{log_{U}^{u}*-1}{ln^{2}(U)(U)} + (\frac{(\frac{(0)}{(u)} - \frac{(1)log_{U}^{u}}{(U)})}{(ln(U))}) + e^{U}\\=&12aU^{2} - \frac{b}{U^{2}ln{10}} + \frac{2log_{U}^{u}}{Uln^{2}(U)} - \frac{log_{U}^{u}}{Uln(U)} + e^{U}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12aU^{2} - \frac{b}{U^{2}ln{10}} + \frac{2log_{U}^{u}}{Uln^{2}(U)} - \frac{log_{U}^{u}}{Uln(U)} + e^{U}\right)}{dU}\\=&12a*2U - \frac{b*-2}{U^{3}ln{10}} - \frac{b*-0}{U^{2}ln^{2}{10}} + \frac{2*-log_{U}^{u}}{U^{2}ln^{2}(U)} + \frac{2(\frac{(\frac{(0)}{(u)} - \frac{(1)log_{U}^{u}}{(U)})}{(ln(U))})}{Uln^{2}(U)} + \frac{2log_{U}^{u}*-2}{Uln^{3}(U)(U)} - \frac{-log_{U}^{u}}{U^{2}ln(U)} - \frac{(\frac{(\frac{(0)}{(u)} - \frac{(1)log_{U}^{u}}{(U)})}{(ln(U))})}{Uln(U)} - \frac{log_{U}^{u}*-1}{Uln^{2}(U)(U)} + e^{U}\\=&24aU + \frac{2b}{U^{3}ln{10}} - \frac{6log_{U}^{u}}{U^{2}ln^{3}(U)} + \frac{log_{U}^{u}}{U^{2}ln(U)} + e^{U}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24aU + \frac{2b}{U^{3}ln{10}} - \frac{6log_{U}^{u}}{U^{2}ln^{3}(U)} + \frac{log_{U}^{u}}{U^{2}ln(U)} + e^{U}\right)}{dU}\\=&24a + \frac{2b*-3}{U^{4}ln{10}} + \frac{2b*-0}{U^{3}ln^{2}{10}} - \frac{6*-2log_{U}^{u}}{U^{3}ln^{3}(U)} - \frac{6(\frac{(\frac{(0)}{(u)} - \frac{(1)log_{U}^{u}}{(U)})}{(ln(U))})}{U^{2}ln^{3}(U)} - \frac{6log_{U}^{u}*-3}{U^{2}ln^{4}(U)(U)} + \frac{-2log_{U}^{u}}{U^{3}ln(U)} + \frac{(\frac{(\frac{(0)}{(u)} - \frac{(1)log_{U}^{u}}{(U)})}{(ln(U))})}{U^{2}ln(U)} + \frac{log_{U}^{u}*-1}{U^{2}ln^{2}(U)(U)} + e^{U}\\=&24a - \frac{6b}{U^{4}ln{10}} + \frac{12log_{U}^{u}}{U^{3}ln^{3}(U)} + \frac{24log_{U}^{u}}{U^{3}ln^{4}(U)} - \frac{2log_{U}^{u}}{U^{3}ln(U)} - \frac{2log_{U}^{u}}{U^{3}ln^{2}(U)} + e^{U}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !