There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {e}^{6} + 2{e}^{4} - 2{e}^{3} - 4{e}^{2} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{6} + 2e^{4} - 2e^{3} - 4e^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{6} + 2e^{4} - 2e^{3} - 4e^{2} + 1\right)}{dx}\\=&6e^{5}*0 + 2*4e^{3}*0 - 2*3e^{2}*0 - 4*2e*0 + 0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !