There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (3 - \frac{sqrt(27)}{2})xxxx + (2 - \frac{sqrt(27)}{2}) + 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{2}x^{4}sqrt(27) + 3x^{4} - \frac{1}{2}sqrt(27) + 2x + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{2}x^{4}sqrt(27) + 3x^{4} - \frac{1}{2}sqrt(27) + 2x + 2\right)}{dx}\\=& - \frac{1}{2}*4x^{3}sqrt(27) - \frac{1}{2}x^{4}*0*\frac{1}{2}*27^{\frac{1}{2}} + 3*4x^{3} - \frac{1}{2}*0*\frac{1}{2}*27^{\frac{1}{2}} + 2 + 0\\=& - 2x^{3}sqrt(27) + 12x^{3} + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 2x^{3}sqrt(27) + 12x^{3} + 2\right)}{dx}\\=& - 2*3x^{2}sqrt(27) - 2x^{3}*0*\frac{1}{2}*27^{\frac{1}{2}} + 12*3x^{2} + 0\\=& - 6x^{2}sqrt(27) + 36x^{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 6x^{2}sqrt(27) + 36x^{2}\right)}{dx}\\=& - 6*2xsqrt(27) - 6x^{2}*0*\frac{1}{2}*27^{\frac{1}{2}} + 36*2x\\=& - 12xsqrt(27) + 72x\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 12xsqrt(27) + 72x\right)}{dx}\\=& - 12sqrt(27) - 12x*0*\frac{1}{2}*27^{\frac{1}{2}} + 72\\=& - 12sqrt(27) + 72\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !