There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sin(xxx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x^{3})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x^{3})\right)}{dx}\\=&cos(x^{3})*3x^{2}\\=&3x^{2}cos(x^{3})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2}cos(x^{3})\right)}{dx}\\=&3*2xcos(x^{3}) + 3x^{2}*-sin(x^{3})*3x^{2}\\=&6xcos(x^{3}) - 9x^{4}sin(x^{3})\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6xcos(x^{3}) - 9x^{4}sin(x^{3})\right)}{dx}\\=&6cos(x^{3}) + 6x*-sin(x^{3})*3x^{2} - 9*4x^{3}sin(x^{3}) - 9x^{4}cos(x^{3})*3x^{2}\\=&6cos(x^{3}) - 54x^{3}sin(x^{3}) - 27x^{6}cos(x^{3})\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6cos(x^{3}) - 54x^{3}sin(x^{3}) - 27x^{6}cos(x^{3})\right)}{dx}\\=&6*-sin(x^{3})*3x^{2} - 54*3x^{2}sin(x^{3}) - 54x^{3}cos(x^{3})*3x^{2} - 27*6x^{5}cos(x^{3}) - 27x^{6}*-sin(x^{3})*3x^{2}\\=&-180x^{2}sin(x^{3}) - 324x^{5}cos(x^{3}) + 81x^{8}sin(x^{3})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !