There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(-4x + 5) + sqrt(xx + (3 - sqrt(1 - xx))(3 - sqrt(1 - xx)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-4x + 5) + sqrt(x^{2} + sqrt(-x^{2} + 1)^{2} - 6sqrt(-x^{2} + 1) + 9)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-4x + 5) + sqrt(x^{2} + sqrt(-x^{2} + 1)^{2} - 6sqrt(-x^{2} + 1) + 9)\right)}{dx}\\=&\frac{(-4 + 0)*\frac{1}{2}}{(-4x + 5)^{\frac{1}{2}}} + \frac{(2x + \frac{2(-x^{2} + 1)^{\frac{1}{2}}(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{6(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} + 0)*\frac{1}{2}}{(x^{2} + sqrt(-x^{2} + 1)^{2} - 6sqrt(-x^{2} + 1) + 9)^{\frac{1}{2}}}\\=&\frac{3x}{(-x^{2} + 1)^{\frac{1}{2}}(x^{2} + sqrt(-x^{2} + 1)^{2} - 6sqrt(-x^{2} + 1) + 9)^{\frac{1}{2}}} - \frac{2}{(-4x + 5)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !