There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ log_{ln(x)}^{e^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{ln(x)}^{e^{x}}\right)}{dx}\\=&(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})\\=&\frac{1}{ln(ln(x))} - \frac{log_{ln(x)}^{e^{x}}}{xln(x)ln(ln(x))}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{ln(ln(x))} - \frac{log_{ln(x)}^{e^{x}}}{xln(x)ln(ln(x))}\right)}{dx}\\=&\frac{-1}{ln^{2}(ln(x))(ln(x))(x)} - \frac{-log_{ln(x)}^{e^{x}}}{x^{2}ln(x)ln(ln(x))} - \frac{(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{xln(x)ln(ln(x))} - \frac{log_{ln(x)}^{e^{x}}*-1}{xln^{2}(x)(x)ln(ln(x))} - \frac{log_{ln(x)}^{e^{x}}*-1}{xln(x)ln^{2}(ln(x))(ln(x))(x)}\\=&\frac{-2}{xln^{2}(ln(x))ln(x)} + \frac{log_{ln(x)}^{e^{x}}}{x^{2}ln(x)ln(ln(x))} + \frac{2log_{ln(x)}^{e^{x}}}{x^{2}ln^{2}(x)ln^{2}(ln(x))} + \frac{log_{ln(x)}^{e^{x}}}{x^{2}ln^{2}(x)ln(ln(x))}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2}{xln^{2}(ln(x))ln(x)} + \frac{log_{ln(x)}^{e^{x}}}{x^{2}ln(x)ln(ln(x))} + \frac{2log_{ln(x)}^{e^{x}}}{x^{2}ln^{2}(x)ln^{2}(ln(x))} + \frac{log_{ln(x)}^{e^{x}}}{x^{2}ln^{2}(x)ln(ln(x))}\right)}{dx}\\=&\frac{-2*-1}{x^{2}ln^{2}(ln(x))ln(x)} - \frac{2*-2}{xln^{3}(ln(x))(ln(x))(x)ln(x)} - \frac{2*-1}{xln^{2}(ln(x))ln^{2}(x)(x)} + \frac{-2log_{ln(x)}^{e^{x}}}{x^{3}ln(x)ln(ln(x))} + \frac{(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{2}ln(x)ln(ln(x))} + \frac{log_{ln(x)}^{e^{x}}*-1}{x^{2}ln^{2}(x)(x)ln(ln(x))} + \frac{log_{ln(x)}^{e^{x}}*-1}{x^{2}ln(x)ln^{2}(ln(x))(ln(x))(x)} + \frac{2*-2log_{ln(x)}^{e^{x}}}{x^{3}ln^{2}(x)ln^{2}(ln(x))} + \frac{2(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{2}ln^{2}(x)ln^{2}(ln(x))} + \frac{2log_{ln(x)}^{e^{x}}*-2}{x^{2}ln^{3}(x)(x)ln^{2}(ln(x))} + \frac{2log_{ln(x)}^{e^{x}}*-2}{x^{2}ln^{2}(x)ln^{3}(ln(x))(ln(x))(x)} + \frac{-2log_{ln(x)}^{e^{x}}}{x^{3}ln^{2}(x)ln(ln(x))} + \frac{(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{2}ln^{2}(x)ln(ln(x))} + \frac{log_{ln(x)}^{e^{x}}*-2}{x^{2}ln^{3}(x)(x)ln(ln(x))} + \frac{log_{ln(x)}^{e^{x}}*-1}{x^{2}ln^{2}(x)ln^{2}(ln(x))(ln(x))(x)}\\=&\frac{3}{x^{2}ln^{2}(ln(x))ln(x)} + \frac{6}{x^{2}ln^{3}(ln(x))ln^{2}(x)} + \frac{2}{x^{2}ln^{2}(x)ln^{2}(ln(x))} - \frac{2log_{ln(x)}^{e^{x}}}{x^{3}ln(x)ln(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}}{x^{3}ln^{2}(x)ln^{2}(ln(x))} - \frac{3log_{ln(x)}^{e^{x}}}{x^{3}ln^{2}(x)ln(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}}{x^{3}ln^{3}(x)ln^{3}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}}{x^{3}ln^{3}(x)ln^{2}(ln(x))} + \frac{1}{x^{2}ln^{2}(ln(x))ln^{2}(x)} - \frac{2log_{ln(x)}^{e^{x}}}{x^{3}ln^{3}(x)ln(ln(x))}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{3}{x^{2}ln^{2}(ln(x))ln(x)} + \frac{6}{x^{2}ln^{3}(ln(x))ln^{2}(x)} + \frac{2}{x^{2}ln^{2}(x)ln^{2}(ln(x))} - \frac{2log_{ln(x)}^{e^{x}}}{x^{3}ln(x)ln(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}}{x^{3}ln^{2}(x)ln^{2}(ln(x))} - \frac{3log_{ln(x)}^{e^{x}}}{x^{3}ln^{2}(x)ln(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}}{x^{3}ln^{3}(x)ln^{3}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}}{x^{3}ln^{3}(x)ln^{2}(ln(x))} + \frac{1}{x^{2}ln^{2}(ln(x))ln^{2}(x)} - \frac{2log_{ln(x)}^{e^{x}}}{x^{3}ln^{3}(x)ln(ln(x))}\right)}{dx}\\=&\frac{3*-2}{x^{3}ln^{2}(ln(x))ln(x)} + \frac{3*-2}{x^{2}ln^{3}(ln(x))(ln(x))(x)ln(x)} + \frac{3*-1}{x^{2}ln^{2}(ln(x))ln^{2}(x)(x)} + \frac{6*-2}{x^{3}ln^{3}(ln(x))ln^{2}(x)} + \frac{6*-3}{x^{2}ln^{4}(ln(x))(ln(x))(x)ln^{2}(x)} + \frac{6*-2}{x^{2}ln^{3}(ln(x))ln^{3}(x)(x)} + \frac{2*-2}{x^{3}ln^{2}(x)ln^{2}(ln(x))} + \frac{2*-2}{x^{2}ln^{3}(x)(x)ln^{2}(ln(x))} + \frac{2*-2}{x^{2}ln^{2}(x)ln^{3}(ln(x))(ln(x))(x)} - \frac{2*-3log_{ln(x)}^{e^{x}}}{x^{4}ln(x)ln(ln(x))} - \frac{2(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{3}ln(x)ln(ln(x))} - \frac{2log_{ln(x)}^{e^{x}}*-1}{x^{3}ln^{2}(x)(x)ln(ln(x))} - \frac{2log_{ln(x)}^{e^{x}}*-1}{x^{3}ln(x)ln^{2}(ln(x))(ln(x))(x)} - \frac{6*-3log_{ln(x)}^{e^{x}}}{x^{4}ln^{2}(x)ln^{2}(ln(x))} - \frac{6(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{3}ln^{2}(x)ln^{2}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}*-2}{x^{3}ln^{3}(x)(x)ln^{2}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}*-2}{x^{3}ln^{2}(x)ln^{3}(ln(x))(ln(x))(x)} - \frac{3*-3log_{ln(x)}^{e^{x}}}{x^{4}ln^{2}(x)ln(ln(x))} - \frac{3(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{3}ln^{2}(x)ln(ln(x))} - \frac{3log_{ln(x)}^{e^{x}}*-2}{x^{3}ln^{3}(x)(x)ln(ln(x))} - \frac{3log_{ln(x)}^{e^{x}}*-1}{x^{3}ln^{2}(x)ln^{2}(ln(x))(ln(x))(x)} - \frac{6*-3log_{ln(x)}^{e^{x}}}{x^{4}ln^{3}(x)ln^{3}(ln(x))} - \frac{6(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{3}ln^{3}(x)ln^{3}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}*-3}{x^{3}ln^{4}(x)(x)ln^{3}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}*-3}{x^{3}ln^{3}(x)ln^{4}(ln(x))(ln(x))(x)} - \frac{6*-3log_{ln(x)}^{e^{x}}}{x^{4}ln^{3}(x)ln^{2}(ln(x))} - \frac{6(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{3}ln^{3}(x)ln^{2}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}*-3}{x^{3}ln^{4}(x)(x)ln^{2}(ln(x))} - \frac{6log_{ln(x)}^{e^{x}}*-2}{x^{3}ln^{3}(x)ln^{3}(ln(x))(ln(x))(x)} + \frac{-2}{x^{3}ln^{2}(ln(x))ln^{2}(x)} + \frac{-2}{x^{2}ln^{3}(ln(x))(ln(x))(x)ln^{2}(x)} + \frac{-2}{x^{2}ln^{2}(ln(x))ln^{3}(x)(x)} - \frac{2*-3log_{ln(x)}^{e^{x}}}{x^{4}ln^{3}(x)ln(ln(x))} - \frac{2(\frac{(\frac{(e^{x})}{(e^{x})} - \frac{(\frac{1}{(x)})log_{ln(x)}^{e^{x}}}{(ln(x))})}{(ln(ln(x)))})}{x^{3}ln^{3}(x)ln(ln(x))} - \frac{2log_{ln(x)}^{e^{x}}*-3}{x^{3}ln^{4}(x)(x)ln(ln(x))} - \frac{2log_{ln(x)}^{e^{x}}*-1}{x^{3}ln^{3}(x)ln^{2}(ln(x))(ln(x))(x)}\\=&\frac{-8}{x^{3}ln^{2}(ln(x))ln(x)} - \frac{24}{x^{3}ln^{3}(ln(x))ln^{2}(x)} - \frac{7}{x^{3}ln^{2}(x)ln^{2}(ln(x))} - \frac{24}{x^{3}ln^{4}(ln(x))ln^{3}(x)} - \frac{16}{x^{3}ln^{3}(x)ln^{3}(ln(x))} - \frac{6}{x^{3}ln^{3}(x)ln^{2}(ln(x))} + \frac{6log_{ln(x)}^{e^{x}}}{x^{4}ln(x)ln(ln(x))} + \frac{22log_{ln(x)}^{e^{x}}}{x^{4}ln^{2}(x)ln^{2}(ln(x))} + \frac{11log_{ln(x)}^{e^{x}}}{x^{4}ln^{2}(x)ln(ln(x))} + \frac{36log_{ln(x)}^{e^{x}}}{x^{4}ln^{3}(x)ln^{3}(ln(x))} + \frac{36log_{ln(x)}^{e^{x}}}{x^{4}ln^{3}(x)ln^{2}(ln(x))} - \frac{5}{x^{3}ln^{2}(ln(x))ln^{2}(x)} + \frac{12log_{ln(x)}^{e^{x}}}{x^{4}ln^{3}(x)ln(ln(x))} + \frac{24log_{ln(x)}^{e^{x}}}{x^{4}ln^{4}(x)ln^{4}(ln(x))} + \frac{36log_{ln(x)}^{e^{x}}}{x^{4}ln^{4}(x)ln^{3}(ln(x))} - \frac{8}{x^{3}ln^{3}(ln(x))ln^{3}(x)} + \frac{22log_{ln(x)}^{e^{x}}}{x^{4}ln^{4}(x)ln^{2}(ln(x))} - \frac{2}{x^{3}ln^{2}(ln(x))ln^{3}(x)} + \frac{6log_{ln(x)}^{e^{x}}}{x^{4}ln^{4}(x)ln(ln(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !