There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-(5x + 1)}{({e}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -5x{e}^{(-x)} - {e}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -5x{e}^{(-x)} - {e}^{(-x)}\right)}{dx}\\=&-5{e}^{(-x)} - 5x({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) - ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=&-4{e}^{(-x)} + 5x{e}^{(-x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !