There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sh(e^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sh(e^{x})\right)}{dx}\\=&ch(e^{x})e^{x}\\=&e^{x}ch(e^{x})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{x}ch(e^{x})\right)}{dx}\\=&e^{x}ch(e^{x}) + e^{x}sh(e^{x})e^{x}\\=&e^{x}ch(e^{x}) + e^{{x}*{2}}sh(e^{x})\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( e^{x}ch(e^{x}) + e^{{x}*{2}}sh(e^{x})\right)}{dx}\\=&e^{x}ch(e^{x}) + e^{x}sh(e^{x})e^{x} + 2e^{x}e^{x}sh(e^{x}) + e^{{x}*{2}}ch(e^{x})e^{x}\\=&e^{x}ch(e^{x}) + 3e^{{x}*{2}}sh(e^{x}) + e^{{x}*{3}}ch(e^{x})\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( e^{x}ch(e^{x}) + 3e^{{x}*{2}}sh(e^{x}) + e^{{x}*{3}}ch(e^{x})\right)}{dx}\\=&e^{x}ch(e^{x}) + e^{x}sh(e^{x})e^{x} + 3*2e^{x}e^{x}sh(e^{x}) + 3e^{{x}*{2}}ch(e^{x})e^{x} + 3e^{{x}*{2}}e^{x}ch(e^{x}) + e^{{x}*{3}}sh(e^{x})e^{x}\\=&e^{x}ch(e^{x}) + 7e^{{x}*{2}}sh(e^{x}) + 6e^{{x}*{3}}ch(e^{x}) + e^{{x}*{4}}sh(e^{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !