There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x){\frac{1}{x}}^{7} + 7 - ln(x){x}^{7} + \frac{{x}^{7}}{7}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{x^{7}} - x^{7}ln(x) + \frac{1}{7}x^{7} + 7\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{x^{7}} - x^{7}ln(x) + \frac{1}{7}x^{7} + 7\right)}{dx}\\=&\frac{-7ln(x)}{x^{8}} + \frac{1}{x^{7}(x)} - 7x^{6}ln(x) - \frac{x^{7}}{(x)} + \frac{1}{7}*7x^{6} + 0\\=&\frac{-7ln(x)}{x^{8}} - 7x^{6}ln(x) + \frac{1}{x^{8}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !