Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (sqrt(2) - 1.41421)lg(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = lg(x)sqrt(2) - 1.41421lg(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(x)sqrt(2) - 1.41421lg(x)\right)}{dx}\\=&\frac{sqrt(2)}{ln{10}(x)} + lg(x)*0*0.5*2^{\frac{1}{2}} - \frac{1.41421}{ln{10}(x)}\\=&\frac{sqrt(2)}{xln{10}} - \frac{1.41421}{xln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sqrt(2)}{xln{10}} - \frac{1.41421}{xln{10}}\right)}{dx}\\=&\frac{-sqrt(2)}{x^{2}ln{10}} + \frac{-*0sqrt(2)}{xln^{2}{10}} + \frac{*0*0.5*2^{\frac{1}{2}}}{xln{10}} - \frac{1.41421*-1}{x^{2}ln{10}} - \frac{1.41421*-0}{xln^{2}{10}}\\=&\frac{-sqrt(2)}{x^{2}ln{10}} + \frac{1.41421}{x^{2}ln{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sqrt(2)}{x^{2}ln{10}} + \frac{1.41421}{x^{2}ln{10}}\right)}{dx}\\=&\frac{-*-2sqrt(2)}{x^{3}ln{10}} - \frac{-*0sqrt(2)}{x^{2}ln^{2}{10}} - \frac{*0*0.5*2^{\frac{1}{2}}}{x^{2}ln{10}} + \frac{1.41421*-2}{x^{3}ln{10}} + \frac{1.41421*-0}{x^{2}ln^{2}{10}}\\=&\frac{2sqrt(2)}{x^{3}ln{10}} - \frac{2.82842}{x^{3}ln{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2sqrt(2)}{x^{3}ln{10}} - \frac{2.82842}{x^{3}ln{10}}\right)}{dx}\\=&\frac{2*-3sqrt(2)}{x^{4}ln{10}} + \frac{2*-*0sqrt(2)}{x^{3}ln^{2}{10}} + \frac{2*0*0.5*2^{\frac{1}{2}}}{x^{3}ln{10}} - \frac{2.82842*-3}{x^{4}ln{10}} - \frac{2.82842*-0}{x^{3}ln^{2}{10}}\\=&\frac{-6sqrt(2)}{x^{4}ln{10}} + \frac{8.48526}{x^{4}ln{10}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return