Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{6}{5}lg(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6}{5}lg(x)\right)}{dx}\\=&\frac{\frac{6}{5}}{ln{10}(x)}\\=&\frac{6}{5xln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{6}{5xln{10}}\right)}{dx}\\=&\frac{6*-1}{5x^{2}ln{10}} + \frac{6*-0}{5xln^{2}{10}}\\=&\frac{-6}{5x^{2}ln{10}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6}{5x^{2}ln{10}}\right)}{dx}\\=&\frac{-6*-2}{5x^{3}ln{10}} - \frac{6*-0}{5x^{2}ln^{2}{10}}\\=&\frac{12}{5x^{3}ln{10}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{12}{5x^{3}ln{10}}\right)}{dx}\\=&\frac{12*-3}{5x^{4}ln{10}} + \frac{12*-0}{5x^{3}ln^{2}{10}}\\=&\frac{-36}{5x^{4}ln{10}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return