Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of X is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ log_{xx}^{x + 1}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{x^{2}}^{x + 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{x^{2}}^{x + 1}\right)}{dX}\\=&(\frac{(\frac{(0 + 0)}{(x + 1)} - \frac{(0)log_{x^{2}}^{x + 1}}{(x^{2})})}{(ln(x^{2}))})\\=& - 0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{dX}\\=& - 0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{dX}\\=& - 0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{dX}\\=& - 0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return