There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ lg(lg(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(lg(x))\right)}{dx}\\=&\frac{1}{ln{10}(lg(x))ln{10}(x)}\\=&\frac{1}{xln^{2}{10}lg(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{xln^{2}{10}lg(x)}\right)}{dx}\\=&\frac{-1}{x^{2}ln^{2}{10}lg(x)} + \frac{-2*0}{xln^{3}{10}lg(x)} + \frac{-1}{xln^{2}{10}lg^{2}(x)ln{10}(x)}\\=&\frac{-1}{x^{2}ln^{2}{10}lg(x)} - \frac{1}{x^{2}ln^{3}{10}lg^{2}(x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}ln^{2}{10}lg(x)} - \frac{1}{x^{2}ln^{3}{10}lg^{2}(x)}\right)}{dx}\\=&\frac{--2}{x^{3}ln^{2}{10}lg(x)} - \frac{-2*0}{x^{2}ln^{3}{10}lg(x)} - \frac{-1}{x^{2}ln^{2}{10}lg^{2}(x)ln{10}(x)} - \frac{-2}{x^{3}ln^{3}{10}lg^{2}(x)} - \frac{-3*0}{x^{2}ln^{4}{10}lg^{2}(x)} - \frac{-2}{x^{2}ln^{3}{10}lg^{3}(x)ln{10}(x)}\\=&\frac{2}{x^{3}ln^{2}{10}lg(x)} + \frac{3}{x^{3}ln^{3}{10}lg^{2}(x)} + \frac{2}{x^{3}ln^{4}{10}lg^{3}(x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}ln^{2}{10}lg(x)} + \frac{3}{x^{3}ln^{3}{10}lg^{2}(x)} + \frac{2}{x^{3}ln^{4}{10}lg^{3}(x)}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln^{2}{10}lg(x)} + \frac{2*-2*0}{x^{3}ln^{3}{10}lg(x)} + \frac{2*-1}{x^{3}ln^{2}{10}lg^{2}(x)ln{10}(x)} + \frac{3*-3}{x^{4}ln^{3}{10}lg^{2}(x)} + \frac{3*-3*0}{x^{3}ln^{4}{10}lg^{2}(x)} + \frac{3*-2}{x^{3}ln^{3}{10}lg^{3}(x)ln{10}(x)} + \frac{2*-3}{x^{4}ln^{4}{10}lg^{3}(x)} + \frac{2*-4*0}{x^{3}ln^{5}{10}lg^{3}(x)} + \frac{2*-3}{x^{3}ln^{4}{10}lg^{4}(x)ln{10}(x)}\\=&\frac{-6}{x^{4}ln^{2}{10}lg(x)} - \frac{11}{x^{4}ln^{3}{10}lg^{2}(x)} - \frac{12}{x^{4}ln^{4}{10}lg^{3}(x)} - \frac{6}{x^{4}ln^{5}{10}lg^{4}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !