Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {\frac{1}{({e}^{2}x - {e}^{x} + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(xe^{2} - {e}^{x} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(xe^{2} - {e}^{x} + 1)^{2}}\right)}{dx}\\=&(\frac{-2(e^{2} + x*2e*0 - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0)}{(xe^{2} - {e}^{x} + 1)^{3}})\\=&\frac{-2e^{2}}{(xe^{2} - {e}^{x} + 1)^{3}} + \frac{2{e}^{x}}{(xe^{2} - {e}^{x} + 1)^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2e^{2}}{(xe^{2} - {e}^{x} + 1)^{3}} + \frac{2{e}^{x}}{(xe^{2} - {e}^{x} + 1)^{3}}\right)}{dx}\\=&-2(\frac{-3(e^{2} + x*2e*0 - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0)}{(xe^{2} - {e}^{x} + 1)^{4}})e^{2} - \frac{2*2e*0}{(xe^{2} - {e}^{x} + 1)^{3}} + 2(\frac{-3(e^{2} + x*2e*0 - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0)}{(xe^{2} - {e}^{x} + 1)^{4}}){e}^{x} + \frac{2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(xe^{2} - {e}^{x} + 1)^{3}}\\=&\frac{6e^{4}}{(xe^{2} - {e}^{x} + 1)^{4}} - \frac{12{e}^{x}e^{2}}{(xe^{2} - {e}^{x} + 1)^{4}} + \frac{6{e}^{(2x)}}{(xe^{2} - {e}^{x} + 1)^{4}} + \frac{2{e}^{x}}{(xe^{2} - {e}^{x} + 1)^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return