Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ axxxx + bxxx + cxx + dx + f\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{4} + bx^{3} + cx^{2} + dx + f\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{4} + bx^{3} + cx^{2} + dx + f\right)}{dx}\\=&a*4x^{3} + b*3x^{2} + c*2x + d + 0\\=&4ax^{3} + 3bx^{2} + 2cx + d\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4ax^{3} + 3bx^{2} + 2cx + d\right)}{dx}\\=&4a*3x^{2} + 3b*2x + 2c + 0\\=&12ax^{2} + 6bx + 2c\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12ax^{2} + 6bx + 2c\right)}{dx}\\=&12a*2x + 6b + 0\\=&24ax + 6b\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24ax + 6b\right)}{dx}\\=&24a + 0\\=&24a\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return