Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of a is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {\frac{1}{({a}^{2} - a + 1)}}^{2}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(a^{2} - a + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(a^{2} - a + 1)^{2}}\right)}{da}\\=&(\frac{-2(2a - 1 + 0)}{(a^{2} - a + 1)^{3}})\\=&\frac{-4a}{(a^{2} - a + 1)^{3}} + \frac{2}{(a^{2} - a + 1)^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4a}{(a^{2} - a + 1)^{3}} + \frac{2}{(a^{2} - a + 1)^{3}}\right)}{da}\\=&-4(\frac{-3(2a - 1 + 0)}{(a^{2} - a + 1)^{4}})a - \frac{4}{(a^{2} - a + 1)^{3}} + 2(\frac{-3(2a - 1 + 0)}{(a^{2} - a + 1)^{4}})\\=&\frac{24a^{2}}{(a^{2} - a + 1)^{4}} - \frac{24a}{(a^{2} - a + 1)^{4}} - \frac{4}{(a^{2} - a + 1)^{3}} + \frac{6}{(a^{2} - a + 1)^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return