There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ Lsin(x) - lsin(B(1 - cos(\frac{PX}{A})) + B + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Lsin(x) - lsin(-Bcos(\frac{PX}{A}) + 2B + x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Lsin(x) - lsin(-Bcos(\frac{PX}{A}) + 2B + x)\right)}{dx}\\=&Lcos(x) - lcos(-Bcos(\frac{PX}{A}) + 2B + x)(-B*-sin(\frac{PX}{A})*0 + 0 + 1)\\=&Lcos(x) - lcos(-Bcos(\frac{PX}{A}) + 2B + x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !