There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ h(\frac{x}{A} - \frac{sin(\frac{2Px}{A})}{(2P)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{hx}{A} - \frac{\frac{1}{2}hsin(\frac{2Px}{A})}{P}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{hx}{A} - \frac{\frac{1}{2}hsin(\frac{2Px}{A})}{P}\right)}{dx}\\=&\frac{h}{A} - \frac{\frac{1}{2}hcos(\frac{2Px}{A})*2P}{PA}\\=& - \frac{hcos(\frac{2Px}{A})}{A} + \frac{h}{A}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !