There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ h - h(10{(\frac{x}{A})}^{3} - 15{(\frac{x}{A})}^{4} + 6{(\frac{x}{A})}^{5})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{10hx^{3}}{A^{3}} + \frac{15hx^{4}}{A^{4}} - \frac{6hx^{5}}{A^{5}} + h\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{10hx^{3}}{A^{3}} + \frac{15hx^{4}}{A^{4}} - \frac{6hx^{5}}{A^{5}} + h\right)}{dx}\\=& - \frac{10h*3x^{2}}{A^{3}} + \frac{15h*4x^{3}}{A^{4}} - \frac{6h*5x^{4}}{A^{5}} + 0\\=& - \frac{30hx^{2}}{A^{3}} + \frac{60hx^{3}}{A^{4}} - \frac{30hx^{4}}{A^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !