There are 1 questions in this calculation: for each question, the 2 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({e}^{(2x)})sin(2y)\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(2x)}sin(2y)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2x)}sin(2y)\right)}{dy}\\=&({e}^{(2x)}((0)ln(e) + \frac{(2x)(0)}{(e)}))sin(2y) + {e}^{(2x)}cos(2y)*2\\=&2{e}^{(2x)}cos(2y)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2{e}^{(2x)}cos(2y)\right)}{dy}\\=&2({e}^{(2x)}((0)ln(e) + \frac{(2x)(0)}{(e)}))cos(2y) + 2{e}^{(2x)}*-sin(2y)*2\\=&-4{e}^{(2x)}sin(2y)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !