There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({e}^{(2x)})cos(2)y\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = y{e}^{(2x)}cos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( y{e}^{(2x)}cos(2)\right)}{dx}\\=&y({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))cos(2) + y{e}^{(2x)}*-sin(2)*0\\=&2y{e}^{(2x)}cos(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2y{e}^{(2x)}cos(2)\right)}{dx}\\=&2y({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))cos(2) + 2y{e}^{(2x)}*-sin(2)*0\\=&4y{e}^{(2x)}cos(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !