There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({x}^{2} + 3sqrt(3)x + 7)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(3xsqrt(3) + x^{2} + 7)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(3xsqrt(3) + x^{2} + 7)\right)}{dx}\\=&\frac{(3sqrt(3) + 3x*0*\frac{1}{2}*3^{\frac{1}{2}} + 2x + 0)*\frac{1}{2}}{(3xsqrt(3) + x^{2} + 7)^{\frac{1}{2}}}\\=&\frac{3sqrt(3)}{2(3xsqrt(3) + x^{2} + 7)^{\frac{1}{2}}} + \frac{x}{(3xsqrt(3) + x^{2} + 7)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !