There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{({x}^{2})}{(a(a - x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(-ax + a^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(-ax + a^{2})}\right)}{dx}\\=&(\frac{-(-a + 0)}{(-ax + a^{2})^{2}})x^{2} + \frac{2x}{(-ax + a^{2})}\\=&\frac{ax^{2}}{(-ax + a^{2})^{2}} + \frac{2x}{(-ax + a^{2})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{ax^{2}}{(-ax + a^{2})^{2}} + \frac{2x}{(-ax + a^{2})}\right)}{dx}\\=&(\frac{-2(-a + 0)}{(-ax + a^{2})^{3}})ax^{2} + \frac{a*2x}{(-ax + a^{2})^{2}} + 2(\frac{-(-a + 0)}{(-ax + a^{2})^{2}})x + \frac{2}{(-ax + a^{2})}\\=&\frac{2a^{2}x^{2}}{(-ax + a^{2})^{3}} + \frac{4ax}{(-ax + a^{2})^{2}} + \frac{2}{(-ax + a^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !