There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4ln(abs + ({x}^{\frac{1}{2}} - 1)) + x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4ln(abs + {x}^{\frac{1}{2}} - 1) + x\right)}{dx}\\=&\frac{4(0 + ({x}^{\frac{1}{2}}((0)ln(x) + \frac{(\frac{1}{2})(1)}{(x)})) + 0)}{(abs + {x}^{\frac{1}{2}} - 1)} + 1\\=&\frac{2}{(abs + x^{\frac{1}{2}} - 1)x^{\frac{1}{2}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !