There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - k)}{(1 + ({x}^{4} - 1)b)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{k}{(bx^{4} - b + 1)} + \frac{1}{(bx^{4} - b + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{k}{(bx^{4} - b + 1)} + \frac{1}{(bx^{4} - b + 1)}\right)}{dx}\\=& - (\frac{-(b*4x^{3} + 0 + 0)}{(bx^{4} - b + 1)^{2}})k + 0 + (\frac{-(b*4x^{3} + 0 + 0)}{(bx^{4} - b + 1)^{2}})\\=&\frac{4kbx^{3}}{(bx^{4} - b + 1)^{2}} - \frac{4bx^{3}}{(bx^{4} - b + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !