There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{(x - 1)}}{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(x - 1)}}{ln(x)}\right)}{dx}\\=&\frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))}{ln(x)} + \frac{{e}^{(x - 1)}*-1}{ln^{2}(x)(x)}\\=&\frac{{e}^{(x - 1)}}{ln(x)} - \frac{{e}^{(x - 1)}}{xln^{2}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !