There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -(arccos(2)x + bsin(2)x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -xarccos(2) - bxsin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -xarccos(2) - bxsin(2)\right)}{dx}\\=&-arccos(2) - x(\frac{-(0)}{((1 - (2)^{2})^{\frac{1}{2}})}) - bsin(2) - bxcos(2)*0\\=&-arccos(2) - bsin(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -arccos(2) - bsin(2)\right)}{dx}\\=&-(\frac{-(0)}{((1 - (2)^{2})^{\frac{1}{2}})}) - bcos(2)*0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !