There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 7yarctan(5y) - \frac{7ln({y}^{2} + \frac{1}{25})}{10}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 7yarctan(5y) - \frac{7}{10}ln(y^{2} + \frac{1}{25})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 7yarctan(5y) - \frac{7}{10}ln(y^{2} + \frac{1}{25})\right)}{dy}\\=&7arctan(5y) + 7y(\frac{(5)}{(1 + (5y)^{2})}) - \frac{\frac{7}{10}(2y + 0)}{(y^{2} + \frac{1}{25})}\\=&7arctan(5y) + \frac{35y}{(25y^{2} + 1)} - \frac{7y}{5(y^{2} + \frac{1}{25})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !