There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sin(2)x}{2} - xcos(2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}xsin(2) - xcos(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}xsin(2) - xcos(2x)\right)}{dx}\\=&\frac{1}{2}sin(2) + \frac{1}{2}xcos(2)*0 - cos(2x) - x*-sin(2x)*2\\=&\frac{sin(2)}{2} - cos(2x) + 2xsin(2x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !