Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a + bx + {e}^{x}(ccos(2x) + dsin(2x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a + bx + c{e}^{x}cos(2x) + d{e}^{x}sin(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a + bx + c{e}^{x}cos(2x) + d{e}^{x}sin(2x)\right)}{dx}\\=&0 + b + c({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(2x) + c{e}^{x}*-sin(2x)*2 + d({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2x) + d{e}^{x}cos(2x)*2\\=&b + c{e}^{x}cos(2x) - 2c{e}^{x}sin(2x) + d{e}^{x}sin(2x) + 2d{e}^{x}cos(2x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return