There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a + bx + {e}^{x}(ccos(2)x + dsin(2)x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a + bx + cx{e}^{x}cos(2) + dx{e}^{x}sin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a + bx + cx{e}^{x}cos(2) + dx{e}^{x}sin(2)\right)}{dx}\\=&0 + b + c{e}^{x}cos(2) + cx({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(2) + cx{e}^{x}*-sin(2)*0 + d{e}^{x}sin(2) + dx({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2) + dx{e}^{x}cos(2)*0\\=&b + c{e}^{x}cos(2) + cx{e}^{x}cos(2) + d{e}^{x}sin(2) + dx{e}^{x}sin(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !