There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ asin(bx)e^{c{x}^{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ae^{cx^{2}}sin(bx)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ae^{cx^{2}}sin(bx)\right)}{dx}\\=&ae^{cx^{2}}c*2xsin(bx) + ae^{cx^{2}}cos(bx)b\\=&2acxe^{cx^{2}}sin(bx) + abe^{cx^{2}}cos(bx)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !