There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 5sin(0.05x)e^{-0.01xx}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5e^{-0.01x^{2}}sin(0.05x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5e^{-0.01x^{2}}sin(0.05x)\right)}{dx}\\=&5e^{-0.01x^{2}}*-0.01*2xsin(0.05x) + 5e^{-0.01x^{2}}cos(0.05x)*0.05\\=&-0.1xe^{-0.01x^{2}}sin(0.05x) + 0.25e^{-0.01x^{2}}cos(0.05x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !