Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (\frac{6}{4}){e}^{(\frac{-({(x - 5)}^{2})}{32})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3}{2}{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3}{2}{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}\right)}{dx}\\=&\frac{3}{2}({e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}((\frac{-1}{32}*2x + \frac{5}{16} + 0)ln(e) + \frac{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})(0)}{(e)}))\\=&\frac{-3x{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{32} + \frac{15{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{32}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3x{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{32} + \frac{15{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{32}\right)}{dx}\\=&\frac{-3{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{32} - \frac{3x({e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}((\frac{-1}{32}*2x + \frac{5}{16} + 0)ln(e) + \frac{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})(0)}{(e)}))}{32} + \frac{15({e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}((\frac{-1}{32}*2x + \frac{5}{16} + 0)ln(e) + \frac{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})(0)}{(e)}))}{32}\\=&\frac{27{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{512} + \frac{3x^{2}{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{512} - \frac{15x{e}^{(\frac{-1}{32}x^{2} + \frac{5}{16}x - \frac{25}{32})}}{256}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return