Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{2}x(x + 3) + sqrt(x - 4)(x + 5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}e^{2} + 3xe^{2} + xsqrt(x - 4) + 5sqrt(x - 4)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}e^{2} + 3xe^{2} + xsqrt(x - 4) + 5sqrt(x - 4)\right)}{dx}\\=&2xe^{2} + x^{2}e^{2}*0 + 3e^{2} + 3xe^{2}*0 + sqrt(x - 4) + \frac{x(1 + 0)*\frac{1}{2}}{(x - 4)^{\frac{1}{2}}} + \frac{5(1 + 0)*\frac{1}{2}}{(x - 4)^{\frac{1}{2}}}\\=&2xe^{2} + 3e^{2} + sqrt(x - 4) + \frac{x}{2(x - 4)^{\frac{1}{2}}} + \frac{5}{2(x - 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return