There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - x{e}^{\frac{1}{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x{e}^{\frac{1}{x}} + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x{e}^{\frac{1}{x}} + x\right)}{dx}\\=& - {e}^{\frac{1}{x}} - x({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) + 1\\=& - {e}^{\frac{1}{x}} + \frac{{e}^{\frac{1}{x}}}{x} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !