Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {sin(x)}^{x} - {x}^{sin(x)}{\frac{1}{x}}^{3}ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {sin(x)}^{x} - \frac{{x}^{sin(x)}ln(x)}{x^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {sin(x)}^{x} - \frac{{x}^{sin(x)}ln(x)}{x^{3}}\right)}{dx}\\=&({sin(x)}^{x}((1)ln(sin(x)) + \frac{(x)(cos(x))}{(sin(x))})) - \frac{-3{x}^{sin(x)}ln(x)}{x^{4}} - \frac{({x}^{sin(x)}((cos(x))ln(x) + \frac{(sin(x))(1)}{(x)}))ln(x)}{x^{3}} - \frac{{x}^{sin(x)}}{x^{3}(x)}\\=&{sin(x)}^{x}ln(sin(x)) + \frac{x{sin(x)}^{x}cos(x)}{sin(x)} - \frac{{x}^{sin(x)}ln^{2}(x)cos(x)}{x^{3}} - \frac{{x}^{sin(x)}ln(x)sin(x)}{x^{4}} + \frac{3{x}^{sin(x)}ln(x)}{x^{4}} - \frac{{x}^{sin(x)}}{x^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return