There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({cot(sqrt(x))}^{2} + sin(x))og{7}^{2}*3x}{l}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{147ogxcot^{2}(sqrt(x))}{l} + \frac{147ogxsin(x)}{l}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{147ogxcot^{2}(sqrt(x))}{l} + \frac{147ogxsin(x)}{l}\right)}{dx}\\=&\frac{147ogcot^{2}(sqrt(x))}{l} + \frac{147ogx*-2cot(sqrt(x))csc^{2}(sqrt(x))*\frac{1}{2}}{l(x)^{\frac{1}{2}}} + \frac{147ogsin(x)}{l} + \frac{147ogxcos(x)}{l}\\=&\frac{147ogcot^{2}(sqrt(x))}{l} - \frac{147ogx^{\frac{1}{2}}cot(sqrt(x))csc^{2}(sqrt(x))}{l} + \frac{147ogsin(x)}{l} + \frac{147ogxcos(x)}{l}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !