There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(x - 8)}^{2} + 7)}{(\frac{{x}^{1}}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x + \frac{142}{x} - 32\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x + \frac{142}{x} - 32\right)}{dx}\\=&2 + \frac{142*-1}{x^{2}} + 0\\=& - \frac{142}{x^{2}} + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !